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1. Introduction 

 

Cancer is a complex and heterogeneous disease which depends on several phenotypic changes 

or hallmarks e.g. evasion of growth suppressors, secretion of molecules inducing angiogenesis, 

replicative immortality [1]. The solid tumour can grow or regress depending on the biological 

and mechanical factors that occur at different scales: tumour, stroma, cellular and 

subcellular/molecular scales. 

Computational models are a tool that has been largely used to better understand the underlying 

mechanisms of solid tumours. Several notable approaches are discrete models such as agent-

based models, continuous models such as partial differential equations, and hybrid models. Solid 

tumour models range from macroscopic representations of volumetric growth to the microscopic 

molecular processes [2]. 

One important question is how to separate a multiscale model of such diverse phenomena into 

multiple single-scale models so that each one represents a specific space-time scale. This work 

presents a theoretical analysis of this problem based on the work proposed by one of the authors 

in [3] to explore the scale separation of a multiscale tumour growth model being developed in 

the PRIMAGE project [4]. 

 

2. Methods 

 

Initially, a scale is defined in terms of grain, which is the largest value between the lower limit of 

spatial/temporal resolution allowed by instrumentation, and the smallest/fastest feature of 

interest. And the extent, which is the smallest value between the upper limit of spatial/temporal 

resolution and the size of the largest/slowest feature to be observed.  

The first step in defining the scale separation of the multiscale model, described in [3], is the 

definition of the mathematical model that offers the infinite resolution representation of the 

multiscale model under development (Eq. 1). 
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in which, X is a generic point within the tumour and t is the time.  𝜋𝛾𝑘
∗  represents the probability 

that a cell k in an untreated tumour changes its internal state 𝛾𝑘, and is a function of the cell's 

type 𝐼𝑘, its differentiation level 𝛼𝑘 , the telomerase state of cell k (𝜏𝑘). and the local concentration 

of the chemical species (�̇�𝑗), that is supplied to the tumour volume at rate 𝜒𝑘
𝑗
 and consumed by 

the tumour cells at rate 𝜎𝑘
𝑗

. 𝑇𝑙  represents the treatment and l is the treatment type. The 

proliferation rate of cells of type i located within the infinitesimal volume dVX is represented by 

𝑟𝑖
𝑑𝑉𝑋(𝑋,𝑡) and the concentration of cells of type i is 𝐶𝑖 . Finally, the volume of the whole tumour 

is the sum of the cellular and the extra-cellular matrix volume for every cell type i, in a 

differentiation state α.  

Following that, we divide the spatial domain into three levels using hybrid numerical approaches 

(Fig. 1). The dimensional analysis shown in Fig 1 represents the temporal and spatial scales in 

the context of the neuroblastoma model. The hypothetical infinite resolution model would span 

nine orders of magnitude both in time and space. This model is currently intractable, so a 

multiscale model is necessary. 

 

 

Figure 1 Scale separation map for multiscale solid tumour growth model. 
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A Finite Element Model (FEM) is proposed to represent the whole tumour using patient-specific 

images and an Agent-Based Model (ABM) is proposed to describe cell behaviour at the tissue 

scale. The latter receives information about the availability of nutrients from the former via 

particularisation and sends information about cell proliferation/apoptosis (considering 

probabilistic information from cell-scale model) that reflects in changes in volume via 

interpolation. 

Every paper that describes a multiscale model should provide justification for its scale separation 

based on the resolution of the experimental methods available to inform the model and the 

computational power available for its solution. 
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