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1. Introduction

In 2008, ACEMD was the first and fastest code utilizing the graphical

processing units (GPUs) to accelerate molecular dynamics (MD)

simulations [Harvey2009]. This innovation has increased the speed of

MD simulations by 1-2 orders of magnitude.

The remaining problem is the accuracy of the molecular

mechanics (MM) and its force fields (FFs), but the recent advance of the

neural network potential (NNP) has a potential to change that. NNP is

based on an idea that a neural network (NN) is a universal approximator,

which can be trained to predict the results of quantum mechanics (QM)

calculations. Numerous NNPs have been proposed, but the most

successful for organic molecules is ANI-2x [Devereux2020]. It is ~106

times faster than its reference QM calculations (ωB97X/6-31G*), but there

are several limitations: no long-range interactions, only 7 elements (H, C,

N, O, F, S, Cl), and only neutral molecules.

Despite these limitations, a hybrid method of NNP and MM

(NNP/MM) has been proposed [Lahey2020]. The main idea is similar to

QM/MM. An important region of a system is modeled with a more

accurate method, while a less accurate and computationally cheaper one

is used for the rest of the system. For example, the binding free energies

of the Tyk2 congeneric ligand benchmark series have been computed

with the alchemical free energy method and NNP/MM, which reduces

the errors from 1.0 kcal/mol to 0.5 kcal/mol [Rufa2020]. However, the

speed of NNP/MM is a critical limitation. Although NNP is much faster
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than QM, it is still slower than MM. For example, the reported simulation

speed is 3.4 ns/day and the longest simulation is 20 ns [Lahey2020]. It is

~2 orders of magnitude worse than the typical simulations with MM.

In this work, we present the release of ACEMD 4 with an optimized

implementation of NNP/MM. The implementation is validated by

performing MD simulations of 4 protein-ligand complexes with a

combined sampling of 1 μs for each complex.

2. Method

We have implemented NNP/MM as proposed by Lahey et al.

[Lahey2020]. A system is partitioned into two regions (NNP and MM) and

coupled with following term:

,

where NNNP and NMM are the number of atoms, respectively; qi and qj are

the atomic charges; ϵij and σij are the Lennard-Jones parameters; rij is the

distance between the atoms; and ϵ0 is the vacuum permittivity.

We have optimized the performance of NNP/MM in three ways.

First, all the terms are computed on a GPU. Neither atomic position, nor

atomic force need to be transferred between the CPU and GPU. Second,

the featurizer of ANI-2x has been implemented as custom CUDA kernels.

Third, the computation of the atomic NNs has been batched to reduce

the number of CUDA kernels taking advantage that the same molecule is

computed repeatedly. The custom kernels and the batched NNPs are

available in the NNPOps library (https://github.com/openmm/NNPOps).

3. Results

We have selected 4 protein-ligand complexes from PDBbind 2019, where

the ligand contains only elements supported by ANI-2x, there are no

charged functional groups, the ligand has <100 atoms and at least one

rotatable bond.

We have performed MD simulations (NVT, T = 310 K) of each

complex with two methods MM (the ligands are modelled with GAFF2

parameters) and NNP/MM (the ligands are modelled with ANI-2x). In

both cases, the proteins are modelled with AMBER ff14SB parameters. In

total each complex with each method has been simulated 10 times for
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100 ns (1 μs of combined sampling).

A comparison of the simulation speed (Table 1) shows that the

performance of NNP/MM has been improved 3.9 times (NVIDIA GTX

1080 GPU). A comparison of protein-ligand interactions (Figure 1) shows

comparable interactions and their probabilities for the 2P95 complex.

The results for the rest complexes are similar.

Table 1: Comparison of MD simulation speed (ns/day) of NNP/MM using the original

TorchANI and the TorchANI accelerated with NNPOps (TorchANI/NNPOps). For

reference, MM speed is included. The results obtained with NVIDIA GTX 1080 GPU.

System MM
NNP/MM

(TorchANI)

NNP/MM
(TorchANI/
NNPOps)

Speed up

1AJV 308 5.01 17.5 3.5

1HPO 254 5.04 18.8 3.7

2P95 168 4.35 19.8 4.6

3BE9 253 5.79 22.1 3.8

Average 3.9

(a) 2P95 with MM (b) 2P95 with NNP/MM

Figure 1 Protein-ligand (2P95) interaction observed in the (a) MM and (b) NNP/MM

simulations. The circles represent the protein residues in the binding pocket. The dotted

lines represent specific interactions (i.e. hydrogen bonds, pi-pi interactions, and sigma

holes) and their probabilities.
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4. Conclusions

We have implemented NNP/MM in ACEMD 4. The implementation is ~5

times faster than previously reported and the simulations of

protein-ligand complexes are 50 times longer than previously reported.

The analysis of the simulations show that NNP can successfully replace

the conventional MM force field, but, due to lack of experimental data, we

cannot verify the improvement of accuracy.

Nevertheless, ACEMD 4 represents a significant so�ware

improvement and feasibility demonstration of NNPs for MD simulations.

This will become a platform to integrate other emerging NNPs (e.g.

SchNet, TorchMD-Net, etc) which have a potential to bring more

accuracy and remove the current limitations. Also, further speed

improvements are possible. Currently, the NNP graphs are executed with

PyTorch, but TensorRT, a low-latency inference library, is much faster

and will be adopted in the future.

ACEMD 4, along with necessary tools and tutorials to set up an

NNP/MM simulation, will be available at https://so�ware.acellera.com/.
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